Layered wheels

21^{e} Journées Graphes et Algorithmes, Bruxelles, 13-15 November, 2019

Dewi Sintiari, joint work with Nicolas Trotignon

Introduction

Let G be a graph.

- H is an induced subgraph of G, if it can be obtained from G by deleting vertices we say that G contains H
- G is H-free if it does not contain any graph isomorphic to H
- G is \mathcal{F}-free if it is H-free, for every $H \in \mathcal{F}$

Truemper configurations

We are interested in the existence of the following graphs as induced subgraphs of the classes being studied.

prism

pyramid

theta

wheel

[^0]
Truemper configurations

We are interested in the existence of the following graphs as induced subgraphs of the classes being studied.

prism

pyramid

theta

wheel

摂 any pair of the three paths must induce a hole (chordless cycle of length at least 4)

[^1]
Truemper configurations

We are interested in the existence of the following graphs as induced subgraphs of the classes being studied.

prism

pyramid

* any pair of the three paths must induce a hole (chordless cycle of length at least 4)

Some classes that exclude Truemper configurations:

- Perfect graphs
- Even-hole-free graphs
\rightarrow excluding pyramid, some wheels ${ }^{1}$
\rightarrow excluding prism, theta, some wheels ${ }^{2}$
- $\underline{\text { even hole }}=\mathrm{a}$ hole of even length
\rightarrow excluding pyramid, theta, many wheels ${ }^{3}$
- Claw-free graphs

theta

wheel

- many others...

[^2]
Even-hole-free (EHF) graphs and Theta-free (TF) graphs

Recall:

- an even hole is a hole of even length
- a theta is a graph induced by three paths s.t. any two of them induce a hole.

Remark. At least two of P_{1}, P_{2}, P_{3} have same parity

Even-hole-free (EHF) graphs and Theta-free (TF) graphs

Recall:

- an even hole is a hole of even length
- a theta is a graph induced by three paths s.t. any two of them induce a hole.

Observation. A theta always contains a claw and an even hole

EHF graphs vs TF graphs - Algorithmic/structural issues

- Coloring
- NPC for TF graphs (because it is NPC for claw-free graphs ${ }^{4}$)
- open for EHF graphs
- Max independent set
- open for both classes
- Remark. it is polynomial for claw-free graphs ${ }^{5}$
- Decomposition theorem
- several decomposition theorems are known for EHF graphs ${ }^{6}$
- open for TF graphs

[^3]
Graph widths

a parameter that measure how "complex" the structure of a graph is

Three notions of widths that we use:

- Treewidth $t w$
- Pathwidth pw
- Rankwidth rw
a well-known bound:

$$
\text { For any graph } G, r w(G) \leq t w(G) \leq p w(G)
$$

Remark.

- Observation: EHF graphs have unbounded treewidth (clique, chordal graphs are EHF)
- It is not easy to produce a (non trivial) EHF graphs of large widths
- also not easy to find a (non trivial) subclass of small widths

Some results on the widths of EHF graphs

Negative results on EHF graphs ${ }^{7}$

- The rankwidth of EHF graph with no diamond is unbounded

diamond
* Remark. the graph contains large clique

[^4]
Some results on the widths of EHF graphs

Negative results on EHF graphs ${ }^{7}$

- The rankwidth of EHF graph with no diamond is unbounded

diamond
© Remark. the graph contains large clique

[^5]

Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

- How about EHF graphs with no K_{4} ?
we show that the treewidth can be arbitrarily large
- This also answers the following question ${ }^{9}$:
is the treewidth of EHF graph (in general) bounded by a function of its max clique size?
no, our constructions have small clique size, but large treewidth

[^6]
Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

- How about EHF graphs with no K_{4} ?
we show that the treewidth can be arbitrarily large
- This also answers the following question ${ }^{9}$:
is the treewidth of EHF graph (in general) bounded by a function of its max clique size?
no, our constructions have small clique size, but large treewidth

Theorem 1. [DS., Trotignon (2019+)]

- For every $\ell \geq 1, k \geq 4$, there exists a K_{4}-free EHF-graph of girth at least k and treewidth at least ℓ.
- idem for triangle-free TF-graph.

[^7]
Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

- How about EHF graphs with no K_{4} ?
we show that the treewidth can be arbitrarily large
- This also answers the following question ${ }^{9}$:
is the treewidth of EHF graph (in general) bounded by a function of its max clique size?
no, our constructions have small clique size, but large treewidth

Theorem 1. [DS., Trotignon (2019+)]

- For every $\ell \geq 1, k \geq 4$, there exists a K_{4}-free EHF-graph of girth at least k and treewidth at least ℓ.
- idem for triangle-free TF-graph.

Such graphs is what we name as Layered wheels

[^8]CNRS, LIP, ENS LYON

\triangle-free TF graphs \& K_{4}-free EHF graphs

What we have and what we study...

Observation:

- \triangle-free TF graphs and K_{4}-free EHF graphs both are (prism, pyramid, theta)-free
- \triangle-free TF graphs do not contain certain wheels, K_{4}-free EHF graphs do not contain some other wheels

Let's study the structure of wheels in our classes

Wheels in our classes

- wheel $=$ hole $H+$ a vertex x that has at least 3 neighbours in H
- 2 -wheel $=$ hole $H+$ vertices x, y that each has at least 3 neighbours in H

wheel

2-wheel

Wheels in our classes

- wheel $=$ hole $H+$ a vertex x that has at least 3 neighbours in H
- 2 -wheel $=$ hole $H+$ vertices x, y that each has at least 3 neighbours in H

wheel

2-wheel

Structure of 2-wheels with x and y non-adjacent

- In \triangle-free EHF graph : 2-wheels are always nested
- In \triangle-free TF graph : nested, except the cube
- In K_{4}-Free EHF graph : nested, with several exceptions

nested wheel

cube

Layered wheel

Notation: Layered wheel, of ℓ layers and girth k

Figure: \triangle-free TF layered wheel of 2 layers with girth 4

\triangle-free TF layered wheel - construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

\triangle-free TF layered wheel - construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

\triangle-free TF layered wheel - construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

Layered wheel is theta-free

- Layered wheel is full of subdivided claw but... it contains no theta

Treewidth of layered wheel

- the treewidth of layered wheel on ℓ layers is at least ℓ

- stronger result: the rankwidth is unbounded
- Classical theorem: ${ }^{10}$

Let t be integer, and \mathcal{C} be a class of graph that do not contain $K_{t, t}$ as a subgraph. Then the class has bounded tw iff it has bounded $r w$.

- our \triangle-free TF layered wheels have no $K_{2,3}$

[^9]
EHF layered wheel - construction

- The first two layers are similar as for \triangle-free TF layered wheel
- The construction is more complicated. There are three types of vertices.

- The treewidth is at least ℓ
- It is even-hole-free
- It contains no $K_{2,2}$, so $r w$ is unbounded

The treewidth is "small" in some sense

Consider layered wheel on ℓ layers.
Remark. to reach treewidth ℓ, the layered wheel needs $\Omega\left(3^{\ell}\right)$ vertices.

Theorem 2. [DS., Trotignon (2019+)]
The treewidth of layered wheel is in $O(\log (n))$ where n is the vertex size.

Proof.

1. $n \gg 3^{\ell}$
2. $t w($ layered $w h e e l) \leq p w($ layered wheel $) \leq 2 \ell$

To sum up...

Theorem 1. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is theta-free and it has girth at least k (so, is \triangle-free when $k \geq 4$).
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

To sum up...

Theorem 1. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is theta-free and it has girth at least k (so, is \triangle-free when $k \geq 4$).
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

Theorem 2. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is K_{4}-free EHF and every hole in the graph has length at least k.
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

Logarithmic treewidth conjecture

Conjectures. [DS., Trotignon (2019+)]

- There exists a constant c such that for any \triangle-free TF graph G, we have

$$
t w(G) \leq c \log |V(G)| .
$$

- Idem for K_{4}-free EHF graph.
if these are true, many graph problems are poly-time solvable in both classes.

Excluding more structure

Theorem 3. [DS., Trotignon (2019+)]

- Let k be fixed. There exists a constant c such that any (theta, triangle,
k-span-wheel)-free graph G has treewidth bounded by $O\left(k^{6}\right)$.
- idem for (K_{4}, pyramid, k-span-wheel)-free EHF graph $\rightarrow O\left(k^{9}\right)$

Excluding more structure

Theorem 4. [DS., Trotignon (2019+)]

Let $k \geq 1$ fixed. There exists a constant c such that any (theta, triangle, k-subdivided-claw)-free graph has treewidth bounded by $O\left(k^{O(1)}\right)$.

k-subdivided claw

Remark.

- The theorem is interesting regarding the max independent set problem. It is open for the class of k-subdivided-claw-free graphs and the class of theta-free graphs
- The theorem is no more true if one exclusion is forgotten.

Grid-minor-like conjecture

Grid minor theorem ${ }^{11}$

There exists a function f such that: if $t w(G) \geq f(k)$, then G contains a grid of treewidth at least k as a minor.

Is there a similar theorem with induced subgraph instead of minor?

[^10]
Grid-minor-like conjecture

${ }^{12}$ Does there exist a function f such that: every graphs with $t w \geq f(k)$ contains as an induced subgraph some graph of $t w \geq k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)
- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs

Grid-minor-like conjecture

${ }^{12}$ Does there exist a function f such that: every graphs with $t w \geq f(k)$ contains as an induced subgraph some graph of $t w \geq k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)
- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs
no, layered wheels is a counter-example

Grid-minor-like conjecture

${ }^{12}$ Does there exist a function f such that: every graphs with $t w \geq f(k)$ contains as an induced subgraph some graph of $t w \geq k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)
- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs
no, layered wheels is a counter-example
How if some items are added to the list?

- layered wheels or some variation of them?
- long paths (P_{t} with $t \geq 5$)?
- a vertex of high degree (at least 4)?
- graphs containing $\geq c^{f}(k)$ vertices?

[^11]
Grid-minor-like conjecture

${ }^{12}$ Does there exist a function f such that: every graphs with $t w \geq f(k)$ contains as an induced subgraph some graph of $t w \geq k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)
- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs
no, layered wheels is a counter-example
How if some items are added to the list?

- layered wheels or some variation of them?
- long paths (P_{t} with $t \geq 5$)?
- a vertex of high degree (at least 4)?
- graphs containing $\geq c^{f}(k)$ vertices?

[^12]

Treewidth and pathwidth

Treewidth

figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery

- The treewidth of G is a parameter measuring how far is G from a tree
- We create a tree decomposition whose nodes are "bags"
- The treewidth of G is the size of the largest bag minus 1 in an optimal tree decomposition
pathwidth
- "path"-version of tree decomposition

Rankwidth

example from Hlineny et. al. Width parameters beyond treewidth and their applications, The Computer Journal (51), 2008

- It is a parameter measuring the connectivity of G
- Rank decomposition is a cubic tree \mathcal{T}, with a bijection $V(G) \rightarrow \mathcal{L}(\mathcal{T})$
- the rankwidth of G is the cut-rank of the adjacency matrix of the separation in an optimal rank decomposition of G

Decomposition theorem

Decomposition theorem

Theorem 1. [Conforti, Cornuéjols, Kapoor, Vušković (2002); da Silva, Vušković (2008)
A connected ehf graph ${ }^{a}$ is either basic or it has a 2-join or a star cutset.
$a_{\text {the }}$ statement is proved for more general class, namely 4-hole-free odd-signable graph

- Basic: a clique, or a hole, or an extended nontrivial basic graph

- 2-join

- star cutset

[^0]: ${ }^{1}$ Chudnovsky, Robertson, Seymour, and Thomas (2002)
 ${ }^{2}$ Conforti, Cornuéjols, Kapoor, and Vušković (2002)
 ${ }^{3}$ Chudnovsky and Seymour (2005)

[^1]: ${ }^{1}$ Chudnovsky, Robertson, Seymour, and Thomas (2002)
 ${ }^{2}$ Conforti, Cornuéjols, Kapoor, and Vušković (2002)
 ${ }^{3}$ Chudnovsky and Seymour (2005)

[^2]: ${ }^{1}$ Chudnovsky, Robertson, Seymour, and Thomas (2002)
 ${ }^{2}$ Conforti, Cornuéjols, Kapoor, and Vušković (2002)
 ${ }^{3}$ Chudnovsky and Seymour (2005)

[^3]: ${ }^{4}$ Hoyler (1981)
 ${ }^{5}$ Minty (1980)
 ${ }^{6}$ Conforti, Cornuéjols, Kapoor, and Vušković (2002); da Silva and Vušković (2008)

[^4]: ${ }^{7}$ Adler, Le, Müller, Radovanović, Trotignon, and Vušković (2017)
 ${ }^{8}$ The first two results are by Cameron, da Silva, Huang, and Vušković (2018); the third result is by Cameron, Chaplick, and Hoáng (2018)

[^5]: ${ }^{7}$ Adler, Le, Müller, Radovanović, Trotignon, and Vušković (2017)
 ${ }^{8}$ The first two results are by Cameron, da Silva, Huang, and Vušković (2018); the third result is by Cameron, Chaplick, and Hoáng (2018)

[^6]: ${ }^{9}$ asked by Cameron, Chaplick, and Hoáng (2018)

[^7]: ${ }^{9}$ asked by Cameron, Chaplick, and Hoáng (2018)

[^8]: ${ }^{9}$ asked by Cameron, Chaplick, and Hoáng (2018)

[^9]: ${ }^{10}$ Gurski and Wanke (2000)

[^10]: ${ }^{11}$ Robertson and Seymour (1986)

[^11]: ${ }^{12}$ informally questioned by Zdeněk Dvoŕák

[^12]: ${ }^{12}$ informally questioned by Zdeněk Dvoŕák

