Layered wheels

21^e Journées Graphes et Algorithmes, Bruxelles, 13 - 15 November, 2019

Dewi Sintiari, joint work with Nicolas Trotignon

Let G be a graph.

- *H* is an induced subgraph of *G*, if it can be obtained from *G* by deleting vertices we say that *G* contains *H*
- G is H-free if it does not contain any graph isomorphic to H
- *G* is \mathcal{F} -free if it is *H*-free, for every $H \in \mathcal{F}$

Truemper configurations

We are interested in the existence of the following graphs as induced subgraphs of the classes being studied.

¹Chudnovsky, Robertson, Seymour, and Thomas (2002) ²Conforti, Cornuéjols, Kapoor, and Vušković (2002) ³Chudnovsky and Seymour (2005)

Truemper configurations

We are interested in the existence of the following graphs as induced subgraphs of the classes being studied.

* any pair of the three paths must induce a hole (chordless cycle of length at least 4)

¹Chudnovsky, Robertson, Seymour, and Thomas (2002) ²Conforti, Cornuéjols, Kapoor, and Vušković (2002) ³Chudnovsky and Seymour (2005)

Truemper configurations

We are interested in the existence of the following graphs <u>as induced subgraphs</u> of the classes being studied.

* any pair of the three paths must induce a hole (chordless cycle of length at least 4)

Some classes that exclude Truemper configurations:

- Perfect graphs
- Even-hole-free graphs
 - even hole = a hole of even length

 \rightarrow excluding pyramid, theta, many wheels 3

 \rightarrow excluding pyramid, some wheels ¹

 \rightarrow excluding prism, theta, some wheels ²

• many others...

¹Chudnovsky, Robertson, Seymour, and Thomas (2002)
²Conforti, Cornuéjols, Kapoor, and Vušković (2002)
³Chudnovsky and Seymour (2005)

Even-hole-free (EHF) graphs and Theta-free (TF) graphs

Recall:

- an even hole is a hole of even length
- a theta is a graph induced by three paths s.t. any two of them induce a hole.

Remark. At least two of P_1, P_2, P_3 have same parity

Even-hole-free (EHF) graphs and Theta-free (TF) graphs

Recall:

- an even hole is a hole of even length
- a theta is a graph induced by three paths s.t. any two of them induce a hole.

Remark. At least two of P_1, P_2, P_3 have same parity

Observation. A theta always contains a claw and an even hole

• Coloring

- NPC for TF graphs (because it is NPC for claw-free graphs⁴)
- open for EHF graphs

• Max independent set

- open for both classes
- Remark. it is polynomial for claw-free graphs ⁵

• Decomposition theorem

- several decomposition theorems are known for EHF graphs ⁶
- open for TF graphs

⁴Hoyler (1981) ⁵Minty (1980) ⁶Conforti, Cornuéjols, Kapoor, and Vušković (2002); da Silva and Vušković (2008)

Graph widths

re a parameter that measure how "complex" the structure of a graph is

Three notions of widths that we use:

- Treewidth tw
- Pathwidth pw
- Rankwidth rw

a well-known bound:

```
For any graph G, rw(G) \le tw(G) \le pw(G)
```

Remark.

- Observation: EHF graphs have unbounded treewidth (clique, chordal graphs are EHF)
- It is not easy to produce a (non trivial) EHF graphs of large widths
- also not easy to find a (non trivial) subclass of small widths

Some results on the widths of EHF graphs

Negative results on EHF graphs⁷

• The rankwidth of EHF graph with <u>no diamond</u> is unbounded

diamond

★ **Remark.** the graph contains large clique

⁸The first two results are by Cameron, da Silva, Huang, and Vušković (2018); the third result is by Cameron, Chaplick, and Hoáng (2018)

⁷Adler, Le, Müller, Radovanović, Trotignon, and Vušković (2017)

Some results on the widths of EHF graphs

Negative results on EHF graphs⁷

• The rankwidth of EHF graph with <u>no diamond</u> is unbounded

★ **Remark.** the graph contains large clique

Positive results on EHF graphs ⁸

- EHF graph G with no triangle: $tw(G) \le 5$
- EHF graph G with no cap: $tw(G) \le 48$
- EHF graph G with no pan: $tw(G) \le 1.5\omega(G)$

CNRS, LIP, ENS LYON

⁷Adler, Le, Müller, Radovanović, Trotignon, and Vušković (2017)

⁸The first two results are by Cameron, da Silva, Huang, and Vušković (2018); the third result is by Cameron, Chaplick, and Hoáng (2018)

Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

• How about EHF graphs with no K₄?

region we show that the treewidth can be arbitrarily large

• This also answers the following question⁹ : is the treewidth of EHF graph (in general) bounded by a function of its max clique size?

no, our constructions have small clique size, but large treewidth

Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

• How about EHF graphs with no K_4 ?

region we show that the treewidth can be arbitrarily large

 This also answers the following question⁹: is the treewidth of EHF graph (in general) bounded by a function of its max clique size?

IN no, our constructions have small clique size, but large treewidth

Theorem 1. [DS., Trotignon (2019+)]

- For every $\ell \ge 1$, $k \ge 4$, there exists a K_4 -free EHF-graph of girth at least k and treewidth at least ℓ .
- idem for triangle-free TF-graph.

⁹asked by Cameron, Chaplick, and Hoáng (2018)

Observation, motivation, and results

Recall: EHF graphs with no triangle have treewidth at most 5

• How about EHF graphs with no K₄?

region we show that the treewidth can be arbitrarily large

• This also answers the following question⁹: is the treewidth of EHF graph (in general) bounded by a function of its max clique size?

IN no, our constructions have small clique size, but large treewidth

Theorem 1. [DS., Trotignon (2019+)]

- For every $\ell \ge 1$, $k \ge 4$, there exists a K_4 -free EHF-graph of girth at least k and treewidth at least ℓ .
- idem for triangle-free TF-graph.

Such graphs is what we name as Layered wheels

⁹asked by Cameron, Chaplick, and Hoáng (2018)

\triangle -free TF graphs & K₄-free EHF graphs

What we have and what we study...

Observation:

- \triangle -free TF graphs and K_4 -free EHF graphs both are (prism, pyramid, theta)-free
- \triangle -free TF graphs do not contain certain wheels, K_4 -free EHF graphs do not contain some other wheels
- Let's study the structure of wheels in our classes

Wheels in our classes

- wheel = hole H + a vertex x that has at least 3 neighbours in H
- 2-wheel = hole H + vertices x, y that each has at least 3 neighbours in H

Wheels in our classes

- wheel = hole H + a vertex x that has at least 3 neighbours in H
- 2-wheel = hole H + vertices x, y that each has at least 3 neighbours in H

Structure of 2-wheels with x and y non-adjacent

- In △-free EHF graph : 2-wheels are always nested
- In $\bigtriangleup\mbox{-free TF graph}$: nested, except the cube
- In K_4 -Free EHF graph : nested, with several exceptions

Notation: Layered wheel, of ℓ layers and girth k

Figure: \triangle -free TF layered wheel of 2 layers with girth 4

$\bigtriangleup\mbox{-free TF}$ layered wheel - construction

 $\stackrel{\mathrm{center}}{\bullet}$

 $G(\ell, k)$, with $\ell = 2$ and k = 4

 L_0

$$G(\ell, k)$$
, with $\ell = 2$ and $k = 4$

$\bigtriangleup\mbox{-free TF}$ layered wheel - construction

$\bigtriangleup\mbox{-free TF}$ layered wheel - construction

Layered wheel is theta-free

• Layered wheel is full of subdivided claw but... it contains no theta

Treewidth of layered wheel

• the treewidth of layered wheel on ℓ layers is at least ℓ

- stronger result: the rankwidth is unbounded
 - Classical theorem: ¹⁰

Let *t* be integer, and C be a class of graph that do not contain $K_{t,t}$ as a subgraph. Then the class has bounded *tw* iff it has bounded *rw*.

In our △-free TF layered wheels have no K_{2,3}

¹⁰Gurski and Wanke (2000)

EHF layered wheel - construction

- The first two layers are similar as for \triangle -free TF layered wheel
- The construction is more complicated. There are three types of vertices.

- The treewidth is at least ℓ
- It is even-hole-free
- It contains no *K*_{2,2}, so *rw* is unbounded

The treewidth is "small" in some sense

Consider layered wheel on ℓ layers.

Remark. to reach treewidth ℓ , the layered wheel needs $\Omega(3^{\ell})$ vertices.

Theorem 2. [DS., Trotignon (2019+)]

The treewidth of layered wheel is in $O(\log(n))$ where *n* is the vertex size.

Proof.

- 1. $n \gg 3^{\ell}$
- 2. tw(layered wheel) $\leq pw$ (layered wheel) $\leq 2\ell$

Theorem 1. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is theta-free and it has girth at least *k* (so, is \triangle -free when $k \ge 4$).
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

Theorem 1. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is theta-free and it has girth at least *k* (so, is \triangle -free when $k \ge 4$).
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

Theorem 2. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is K_4 -free EHF and every hole in the graph has length at least k.
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

Conjectures. [DS., Trotignon (2019+)]

• There exists a constant *c* such that for any \triangle -free TF graph *G*, we have

 $tw(G) \leq c \log |V(G)|.$

• Idem for K₄-free EHF graph.

if these are true, many graph problems are poly-time solvable in both classes.

Excluding more structure

Theorem 3. [DS., Trotignon (2019+)]

- Let k be fixed. There exists a constant c such that any (theta, triangle, k-span-wheel)-free graph G has treewidth bounded by O (k⁶).
- idem for (K₄, pyramid, k-span-wheel)-free EHF graph → O (k⁹)

Excluding more structure

Remark.

- The theorem is interesting regarding the max independent set problem. It is open for the class of <u>k-subdivided-claw-free graphs</u> and the class of theta-free graphs
- The theorem is no more true if one exclusion is forgotten.

Grid minor theorem 11

There exists a function f such that: if $tw(G) \ge f(k)$, then G contains a grid of treewidth at least k as a minor.

Is there a similar theorem with induced subgraph instead of minor?

¹¹Robertson and Seymour (1986)

¹²Does there exist a function *f* such that: every graphs with $tw \ge f(k)$ contains as an induced subgraph some graph of $tw \ge k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)

- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs

¹²Does there exist a function *f* such that: every graphs with $tw \ge f(k)$ contains as an induced subgraph some graph of $tw \ge k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)

- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs

r no, layered wheels is a counter-example

¹²Does there exist a function *f* such that: every graphs with $tw \ge f(k)$ contains as an induced subgraph some graph of $tw \ge k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)

- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs

r no, layered wheels is a counter-example

How if some items are added to the list?

- · layered wheels or some variation of them?
- long paths (P_t with $t \ge 5$)?
- a vertex of high degree (at least 4)?
- graphs containing $\geq c^{f}(k)$ vertices?

¹²Does there exist a function *f* such that: every graphs with $tw \ge f(k)$ contains as an induced subgraph some graph of $tw \ge k$ that is one of the following

- a big clique
- a big complete bipartite graph
- a big grid (possibly subdivided)

- a big wall (possibly subdivided)
- a big line graph of a subdivided wall

Figure: A grid, a wall, a subdivision of the former and its line graphs

r no, layered wheels is a counter-example

How if some items are added to the list?

- layered wheels or some variation of them?
- long paths (P_t with $t \ge 5$)?
- a vertex of high degree (at least 4)?
- graphs containing $\geq c^{f}(k)$ vertices?

MERCI POUR VOTRE ATTENTION

Treewidth and pathwidth

Treewidth

figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery

- The treewidth of G is a parameter measuring how far is G from a tree
- We create a tree decomposition whose nodes are "bags"
- The *treewidth of G* is the size of the largest bag minus 1 in an optimal tree decomposition

pathwidth

• "path"-version of tree decomposition

Rankwidth

example from Hlineny et. al. Width parameters beyond treewidth and their applications, The Computer Journal (51), 2008

- It is a parameter measuring the connectivity of G
- Rank decomposition is a cubic tree \mathcal{T} , with a bijection $V(G) \rightarrow \mathcal{L}(\mathcal{T})$
- the <u>rankwidth</u> of *G* is the cut-rank of the adjacency matrix of the separation in an optimal rank decomposition of *G*

Decomposition theorem

Decomposition theorem

Theorem 1. [Conforti, Cornuéjols, Kapoor, Vušković (2002); da Silva, Vušković (2008)

A connected ehf graph ^a is either basic or it has a 2-join or a star cutset.

^athe statement is proved for more general class, namely 4-hole-free odd-signable graph

• Basic: a clique, or a hole, or an extended nontrivial basic graph

2-join

star cutset

